The flip-or-flop boutique: Marine debris on the shores of St Brandon's rock, an isolated tropical atoll in the Indian Ocean.

نویسندگان

  • Hindrik Bouwman
  • Steven W Evans
  • Nik Cole
  • Nee Sun Choong Kwet Yive
  • Henrik Kylin
چکیده

Isolated coral atolls are not immune from marine debris accumulation. We identified Southeast Asia, the Indian sub-continent, and the countries on the Arabian Sea as most probable source areas of 50 000 items on the shores of St. Brandon's Rock (SBR), Indian Ocean. 79% of the debris was plastics. Flip-flops, energy drink bottles, and compact fluorescent lights (CFLs) were notable item types. The density of debris (0.74 m(-)(1) shore length) is comparable to similar islands but less than mainland sites. Intact CFLs suggests product-facilitated long-range transport of mercury. We suspect that aggregated marine debris, scavenged by the islands from currents and gyres, could re-concentrate pollutants. SBR islets accumulated debris types in different proportions suggesting that many factors act variably on different debris types. Regular cleaning of selected islets will take care of most of the accumulated debris and may improve the ecology and tourism potential. However, arrangements and logistics require more study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Strained Multiple Quantum Well on the Chirped DFB-SOA All Optical Flip-Flop

In this paper, based on the coupled-mode and carrier rate equations, a dynamic model and numerical analysis of a multi quantum well (MQW) chirped distributed feedback semiconductor optical amplifier (DFB-SOA)  all-optical flip-flop is precisely derived. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the ...

متن کامل

A Mathematical Model for Indian Ocean Circulation in Spherical Coordinate

In recent years, the Indian Ocean (IO) has been discovered to have a much larger impact on climate variability than previously thought. This paper reviews processes in which the IO is, or appears to be, actively involved. We begin the mathematical model with a pattern for summer monsoon winds. Three dimensional temperature and velocity fields are calculated analytically for the ocean forced by ...

متن کامل

A new low power high reliability flip-flop robust against process variations

Low scaling technology makes a significant reduction in dimension and supply voltage, and lead to new challenges about power consumption such as increasing nodes sensitivity over radiation-induced soft errors in VLSI circuits. In this area, different design methods have been proposed to low power flip-flops and various research studies have been done to reach a suitable hardened flip-flops. In ...

متن کامل

High-performance and Low-power Clock Branch Sharing Pseudo-NMOS Level Converting Flip-flop

Multi-Supply voltage design using Cluster Voltage Scaling (CVS) is an effective way to reduce power consumption without performance degradation. One of the major issues in this method is performance and power overheads due to insertion of Level Converting Flip-Flops (LCFF) at the interface from low-supply to high-supply clusters to simultaneously perform latching and level conversion. In this p...

متن کامل

Performance Analysis of Reversible Sequential Circuits Based on Carbon NanoTube Field Effect Transistors (CNTFETs)

This study presents the importance of reversible logic in designing of high performance and low power consumption digital circuits. In our research, the various forms of sequential reversible circuits such as D, T, SR and JK flip-flops are investigated based on carbon nanotube field-effect transistors. All reversible flip-flops are simulated in two voltages, 0.3 and 0.5 Volt. Our results show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Marine environmental research

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2016